Overview
In classical logic, every proposition can be written in disjunctive normal form (DNF) and conjunctive normal form (CNF). This is evident with the use of truth tables. To write a proposition in DNF, write its corresponding truth table and each row that evaluates to . To write the same proposition in CNF, apply to each row that evaluates to and negate it.
It’s truth table looks like
\neg & (a & \Rightarrow & b) & \Leftrightarrow & c \\ \hline F & T & T & T & F & T \\ F & T & T & T & T & F \\ T & T & F & F & T & T \\ T & T & F & F & F & F \\ F & F & T & T & F & T \\ F & F & T & T & T & F \\ F & F & T & F & F & T \\ F & F & T & F & T & F \end{array}$$ and it's DNF looks like(a \land b \land \neg c) \lor (a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor (\neg a \land \neg b \land \neg c)
\neg( (a \land b \land c) \lor (a \land \neg b \land \neg c) \lor (\neg a \land b \land c) \lor (\neg a \land \neg b \land c) )
## Bibliography * Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. * Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).