Overview
The floor of is the greatest integer less than . The ceiling of is the least integer greater than . These values are denoted and respectively.
Identities
For integers and , \begin{align*} \left\lfloor \frac{x}{y} \right\rfloor & = \left\lceil \frac{x}{y} - \frac{y - 1}{y} \right\rceil \\ \left\lceil \frac{x}{y} \right\rceil & = \left\lfloor \frac{x}{y} + \frac{y - 1}{y} \right\rfloor \end{align*}
Bibliography
- Bryant, Randal E., and David O’Hallaron. Computer Systems: A Programmer’s Perspective. Third edition, Global edition. Always Learning. Pearson, 2016.
- Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
- Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).